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Abstract
Two nonlocal Alice–Bob Sawada–Kotera (ABSK) systems, accompanied by the parity and time
reversal invariance are studied. The Lax pairs of two systems are uniformly written out in matrix
form. The periodic waves, multiple solitons, and soliton molecules of the ABSK systems are
obtained via the bilinear method and the velocity resonant mechanism. Though the interactions
among solitons are elastic, the interactions between soliton and soliton molecules are not elastic.
In particular, the shapes of the soliton molecules are changed explicitly after interactions.

Keywords: soliton molecules, nonlocal Sawada–Kotera equations, nonelastic interactions,
periodic and solitary waves

(Some figures may appear in colour only in the online journal)

1. Introduction

In 2013, the nonlinear Schrödinger (NLS) equation was
extended to a nonlocal form by Ablowitz and Musslimani [1],
which can be written as

ˆ ˆ ( )+  = = = -A A A B B PCA A x ti 0, , ,t xx
2 *

where P̂ is the parity operator and Ĉ is the charge conjuga-
tion. By using the discrete symmetry group generated by
{ ˆ ˆ ˆ}P C T, , (PTC symmetry group), where T̂ is the time
reversal operator, many nonlinear systems can be extended to
nonlocal forms (or so-called Alice–Bob (AB) systems),
including nonlocal Korteweg–de Vries (KdV) systems [2–5],
nonlocal modified KdV (MKdV) systems [2, 3, 6, 7], discrete
and continuous nonlocal NLS systems [8, 9], etc. The PTC
symmetry group is very important in many physical fields
such as quantum chromodynamics [10], electric circuits [11],
optics [12, 13], Bose–Einstein condensates [14], and atmo-
spheric and oceanic dynamics [4].

The Sawada–Kotera (SK) equation
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i , has been found to be important in

some physical fields and in mathematics [15].

The SK equation (1) is integrable because of the exis-
tence of the Lax pair
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By using the PTC symmetry group, the SK system can be
extended to a nonlocal system, written as
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with the corresponding Lax pair
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and u=A+B, v=A−B. l1, λ2, σ are arbitrary constants.
The nonlocal SK system (3) possesses different proper-

ties with different values of σ. Specifically, this nonlocal
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system will degenerate to a local system when σ=1,

( ) ( )= - - -A A AA A A10 20 . 7t x x x x5 2
2

Without loss of generality, we take σ=0 and σ=−1 to
find their periodic waves, multiple soliton solutions and
soliton molecules in sections 2 and 3. Section 4 includes a
short summary and some discussions.

2. Exact solutions of (3) with σ= 0

By taking σ=0, the model equation (3) becomes
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To solve this equation, a symmetric-antisymmetric
separation approach [2, 3] is the most useful and simplest
method. We separate A into a symmetric part u and an anti-
symmetric part v with respect to the operator ‘ ˆ ˆPT ’ as
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Substituting (9) into (8) and separating the resulting equation
into symmetric and antisymmetric parts, we obtain
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It is clear that (10) and (11) are simply the SK equation
and its symmetry equation. In other words, the approach used
in (10) and (11) is simply a special integrable SK coupling, or
a special dark SK equation [16]. One special trivial symmetry
v can be taken as v=cux which is related to the space
translation invariance.

2.1. Periodic waves of (8)

The periodic waves of (8) can be obtained by solving the
traveling wave solutions of equations (10) and (11), and using
the symmetric condition ˆ ˆ =PTu u and the antisymmetric
condition ˆ ˆ = -PTv v. By using the Jacobi elliptic function
expansion method [17, 18], two specific examples take the
following forms:

Case 1.
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where, ( ) ( )x m x msn , , cn , and ( )x mdn , are the Jacobi elliptic
functions of x with module m,
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and s0, k, m and c are arbitrary constants.

Case 2.
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where

( ) ( )w = - - +m m k16 1 , 154 2 5

and k, m and c are arbitrary constants.
Two types of single soliton solutions of the ABSK

equation (3) with σ=0 can be obtained from the periodic
waves by fixing m=1.

2.2. Multiple soliton solutions and the soliton molecule of (8)

To obtain multiple soliton solutions, we assume the solution
of (8) has the form

[ ( ) ( ( )) ]

[ ( ) ( ( )) ]
( )

= + +

= - + =

A f c f
u

B f c f
u

PTf f

3 ln ln
2

,

3 ln ln
2

, .
16

x xx

x xx

0

0 ^^

Substituting (16) into (8), we obtain
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where Hirota’s bilinear operators Dx and Dt are defined as
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From equation (17) we know that (16) solves (8), with f being
given by the bilinear equation
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The n-soliton solution f=fn, can be written as [2, 3]
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and the summation of { } { }n n n n= ¼, , , n1 2 should be com-
pleted for all non-dual permutations of n = - =i1, 1,i

¼ n1, 2, , . In addition, { }n and { }n- are defined as dual
because the cosh function is an even function.

To be specific, for n=1, we have
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For n=2, we have
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Substituting (26), (25) and (24) into (16), we obtain a
two-soliton solution of (8)

Figure 1 displays the two-soliton solution expressed by
(27) for the ABSK equation (8) with the parameter selections
k1=1, k2=0.8, u0=0.1 and c=1.

To find soliton molecules for the nonlocal system (8), we
can apply a special type of velocity resonant mechanism, as
proposed in [19–22]:
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It is clear from the above that two-soliton molecules are
permitted; however, n-soliton molecules for n 3 do not
exist. In other words, there is no solution for the three-soliton
molecule condition

+ + = + +

= + + = ¹ 

¹  ¹ 

k k u k k u

k k u k k

k k k k

5 5

5 0, ,

, .

i j i l

j l i j

i l j l

2 2
0

2 2
0

2 2
0

Figure 2 displays a single two-soliton molecule with the
parameter selections

= = = = -c k k u1, 0.48, 0.24608.1 2 0

For n=3, we have
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Figure 3 displays a three-soliton solution (16) with f=f3 (30)
and parameter selections

= = = = =k k k u c0.7, 0.6, 0.5, 0.05, 1.1 2 3 0

From figure 3, we note that the interaction between three
solitons is naturally elastic, and does not change their shape
and velocities apart from phase shifts.

Figure 4 displays the interaction between a soliton
molecule and a typical soliton as described by (16) with f=f3
(30) and parameter selections

= = = = - =k k k u c1, 0.45, 0.3, 0.2405, 1.1 2 3 0

Figure 4 shows that the interaction between a soliton and a
soliton molecule is nonelastic, meaning that the shape of the

molecule is changed though the shape of the soliton is not
changed.

For n=4, we write the soliton solution for the function
f=f4 in the equivalent Hirota’s form:
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Figure 1. Two-soliton solution of (8).
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Figure 5 shows a density plot of the interaction between two
soliton molecules, as described by (16) with f=f4 (32) and
parameter selections

= = =

= = - =

k k k

k u c

1, 0.45, 0.4,

417

20
, 0.2405, 1.

1 2 3

4 0

Figure 5 shows that the interaction between two soliton
molecules is also nonelastic, meaning that the shapes are
changed for both molecules.

3. Exact solutions of (3) with σ=−1

In this section, we focus on the exact solutions of (3) with
σ=−1,

[ ( ) ( ) ]
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=- - + + -
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ABA A B B

B PTA A x t
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Applying the same transformation (9) and the symmetric-
antisymmetric separation approach to solve (33) obtains

( ) ( )+ + - - + =u u uu vv v u u u5 5 0, 34t x x x x x5 2 2
2 2

( ) ( )+ + + + - =v v vu uv vu v v5 5 0, 35t x x x x x5 2 2
2 2

with the symmetric and antisymmetric conditions

= = -PTu u PTv v, .^^ ^^

Thus, we can prove that the equation system (34)–(35)
can be solved by the complex SK equation

( )
( )+ + + = = + = -

36
U U UU U U U u v5 5 0, i , i 1 .t x x x x4 2

2

3.1. Periodic wave of (33)

Because of the properties of (36), using the Jacobi elliptic
function expansion method [17, 18] for (36) allows one of the
special periodic waves of (33) to be written as (x w= +kx t)

Figure 2. One-soliton molecule of (8).

Figure 3. Three-soliton solution of (8).

Figure 4. Interaction between one soliton and one soliton molecule
within the ABSK system (8).

Figure 5. Interaction between two soliton molecules within the
ABSK system (8).
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so that
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where the constants C0, D0 and S0 are defined by
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3.2. Multiple solitons and soliton molecules of (33)

Because the symmetric and antisymmetric separation
equations (34) and (35) can be solved by the complex SK
equation (36), the complex SK equation can be bilinearized to
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solution of (33), with the form
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where functions f and g are determined by the bilinear
equations
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0 and c is an arbitrary constant.
For n=1, we take

( ) ( ) ( ) ( ) ( )x x= =f c g ccosh cos , sinh sin . 44

Substituting (44) and (21) into (40), we obtain a one-soliton
solution as follows:
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When c=0, the solution (45) is a ˆ ˆPT invariant soliton,
whereas (45) is also a ˆ ˆPT symmetry breaking soliton for non-
zero c.

For n=2, we have the forms of f=f2 and g=g2
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Substituting (46), (47) and (48) into (40), we obtain a two-
soliton solution of (33).

Figure 6 shows the interaction of two solitons for the ˆ ˆPT
symmetry breaking case p=c 6, where the other parameters
are fixed as k1=1, k2=0.8 and u0=0.

If the velocity resonance condition + + =k k u5 01
2

2
2

0

is satisfied, the two soliton solution (40), together with (46),
becomes a two-soliton molecule. Figure 7 displays the
structure of the two-soliton molecule under the parameter
selections
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For n=3, we have
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Figure 6. Two-soliton solution expressed by (40) with (46) with the
parameter selections k1=1, k2=0.8, u0=0 and c=π/6 within
the ABSK system (33).
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where
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Substituting (49), (50) and (51) into (40), we can obtain a
three soliton solution of (33).

Figure 8 displays the elastic interaction property between
three solitons expressed by (40) with (49), and parameter
selections

p
= = = = =k k k u c1, 0.8, 0.4, 0,

6
.1 2 3 0

Figure 9 displays the interaction between one soliton and
one two-soliton molecule expressed by (40) with (49), and the

velocity resonant condition + + =u k k5 00 1
2

2
2 , where the

parameters are fixed as

p
= = = = - =k k k u c1, 0.48, 0.4, 0.24608,

3
.1 2 3 0

From figure 9, it is clear that the interaction between one
soliton and one soliton molecule is nonelastic because the
shape of the molecule has been altered by the interaction.

4. Summary and discussions

In this paper, we focus on the nonlocal Alice–Bob Sawada–
Kotera systems, and select two typical models in order to
discuss their integrability and exact solutions. Other models
with different values of σ could use the same approach to
obtain solutions. Moreover, other fifth-order integrable non-
local systems such as the nonlocal Kaup-Kupershmidt system
and the nonlocal fifth-order KDV system [23] could also
integrate into a whole fifth-order nonlocal system with a
nonlocal SK system by introducing further parameters.

Using the Jacobi elliptic function expansion method and
bilinear approach, we obtain periodic waves and multiple
soliton solutions for two typical nonlocal Sawada–Kotera
models. It is interesting to note that by using the so-called
velocity resonance mechanism introduced in [19, 21], we find
that soliton molecules can also be found in nonlocal ABSK
systems. Based on the velocity resonance mechanism, other
researchers have successfully obtained soliton molecules in
many local systems [20, 21, 24, 25]. Soliton molecules have
been experimentally observed by many scientists [26, 27].

It is well known that with the exception of soliton fission
and soliton fusion for some special models [28], interactions
between solitons are usually elastic. In fact, soliton interac-
tions based on local and nonlocal SK equations are particu-
larly elastic. However, in this paper we find that the
interactions between solitons and soliton molecules may be

Figure 7. Two-soliton molecule expressed by (40) with (46) and the
parameter selections k1=1, k2=0.4, u0=−0.232 and c=π/3
within the ABSK system (33).

Figure 8. Interaction among three solitons expressed by (40) with
(49) and the parameter selections = = = =k k k u1, 0.8, 0.4, 01 2 3 0

and c=π/6 within the ABSK system (33).

Figure 9. Interaction between one soliton and one two-soliton
molecule expressed by (40) with (49) and the parameter selections
k1=1, k2=0.48, k3=0.4, u0=−0.24608 and c=π/3 within
the ABSK system (33).
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nonelastic because the shape of the soliton molecules is
explicitly changed due to interaction.
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